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Abstract. A new connectionist model, called Switching Neural Network
(SNN), for the solution of classification problems is presented. SNN in-
cludes a first layer containing a particular kind of A/D converters, called
latticizers, that suitably transform input vectors into binary strings.
Then, the subsequent two layers of an SNN realize a positive Boolean
function that solve in a lattice domain the original classification problem.
Every function realized by an SNN can be written in terms of intelligi-
ble rules. Training can be performed by adopting a proper method for
positive Boolean function reconstruction, called Shadow Clustering (SC).
Simulation results obtained on the StatLog benchmark show the good
quality of the SNNs trained with SC.

1 Introduction

Any classification problem can be viewed as an optimization problem, where a
proper functional, i.e. the probability of error, has to be minimized by choosing
the best classifier g inside a given collection I'. In this sense any technique for
the solution of classification problems must provide for two different actions: the
class I' of decision functions must be suitably determined (model selection) and
the best classifier in I" must be searched for (training phase).

General theoretical results advise us against choosing a too large set I'; in
fact, with this choice it is likely to incur in the problem of overfitting: the training
phase generates a decision function g € I' that performs well on the examples of
the training set, but scores a high number of misclassifications on the remaining
points of the input domain. On the other hand, if a too small set I" is considered,
it is impossible to obtain a sufficiently low number of errors in the training set.

A possible approach consists in choosing initially a large I', leaving to the
learning algorithm the task of retrieving a classifier g which is enough simple,
according to some index of complexity, and behaves well on the training set. This
is the approach followed by support vector machines [1], where a regularization
constant controls the trade-off between the complexity of the resulting decision
function and the number of errors scored by it on the available training set.

In a similar way, we will introduce in the following sections a new connection-
ist model, called Switching Neural Network (SNN), which is sufficiently rich to



approximate within an arbitrary precision any measurable function. As described
later, this connectionist model presents some interesting properties, among which
the possibility of allowing a precise description of classifiers g € I in terms of
intelligible rules.

A proper learning algorithm, called Shadow Clustering (SC), can be adopted
to search for the simplest SNN that ensures a sufficiently low number of errors on
the training set. Preliminary results show that SNNs trained by SC can achieve
generalization errors comparable with those of best machine learning techniques.
Due to space limitation, details of SC are not presented here, but can be found
elsewhere [2].

2 Model selection

Consider a general binary classification problem, where d-dimensional patterns
x € X C R? are to be assigned to one of two possible classes, labeled by the
values of a Boolean output y € {0,1}. According to possible situations in real
world problems, the type of the components z;, i = 1,...,d, can be either
continuous ordered, when x; belongs to a subset of R, or discrete ordered, when
x; assumes values inside a finite ordered set, or nominal, when x; can assume
values inside a finite set, where no ordering is defined.

Denote with I, the set {1,2,...,m} of the first m positive integers. Without
loss of generality, I,,, (for a proper value of m) can be regarded as the domain
of any discrete ordered or nominal variable. In the first case, I,,, is viewed as a
chain, whereas in the latter no ordering is assumed to be defined on it.

Now, consider the Boolean lattice {0,1}", equipped with the well known bi-
nary operations ‘4’ (logical sum or OR) and ‘-’ (logical product or AND). According
to the standard partial ordering on {0,1}", a Boolean function f : {0,1}" —
{0,1} is called positive if u < v implies f(u) < f(v) for every u,v € {0,1}™.

A recent theoretical result [3] asserts that positive Boolean functions are uni-
versal approximators, i.e. they can approximate arbitrarily well every measurable
function g : R? — {0, 1}. Denote with @, the subset of {0,1}" containing the
strings of n bits having exactly [ values 1 inside them. A possible procedure for
finding the positive Boolean function f that approximates a given classifier g is
based on the following three steps:

1. (Discretization) For every ordered input x;, determine a finite partition B;
of its domain X; such that a function ¢ can be found, which approximates
g on X within the desired precision and assumes a constant value on every
set B € B, where B = {HleBi : BieB;,i=1,...,d}.

2. (Latticization) By employing a proper function ¢, map the points of the
domain X into the strings of Q! so that ¢(x) # (') only if x € B and
' € B’, being B and B’ two different sets in B.

3. (Positive Boolean function synthesis) Select a positive Boolean function f
such that f(ep(x)) = g(x) for every x € X.



2.1 Discretization

Since the exact behavior of the decision function g is not known, the approxi-
mating classifier § and the partition B have to be inferred from the examples
(x;,y;) of the training set S. Every set B; € B; must be enough large to include
the component x;; of some point x; in S. Nevertheless, the resulting partition
B must be enough fine to capture the actual complexity of the function g.
Several different discretization methods for binary classification problems
have been proposed in the literature [4-6]. Usually, for each ordered input x;

a set of m; — 1 consecutive values 7;; < 7j2 < -+ < 7jm,—1 is generated and
the partition B; is formed by the m; sets X; N R, where R;; = (—o0,7:1],
Riz = (ri1,ri2)s -5 Rimi—1 = (Tiymi—2:Timi—1], Rim; = (Ti,m,—1,+00). Excel-

lent results have been obtained with the algorithm Chi2 [5], which employ the
x? statistic to decide the position of the points 744, k= 1,...,m; — 1, and with
the technique EntMDL [4], which adopts entropy estimates to achieve the same
goal. An alternative promising approach is offered by the method used in the
LAD system [6]: in this case an integer programming problem is solved to obtain
optimal values for the cutoffs r;.

By applying a procedure of this kind, the discretization task defines for each
ordered input z; a mapping ¥; : X; — I, where ¥;(z) = k if and only if
z € R;i. If we assume that 1; is the identity function with m; = |X;| when z;
is a nominal variable, the approximating function § is uniquely determined by a
discrete function h : I — {0,1}, defined as h(¢(x)) = §(x), where I = H?Zl Ip,,
and ¥ () is the mapping from X to I, whose ith component is given by ¥;(x;).

2.2 Latticization

The function 1 provides a mapping from the domain X onto the set I =
H?:l I,,;, such that ¥(x) = ¢ (') if  and x’ belong to the same set B € B,
whereas ¥(x) # Y(a') only if x € B and o’ € B’, being B and B’ two differ-
ent sets in B. Consequently, the 1-1 function ¢ from X to Q! required in the
latticization step, can be simply determined by defining a proper 1-1 function
B: 1 — Q. In this way, ¢(x) = B()(x)) for every = € X.

A possible way of constructing the function 3 is to define in a proper way
d mappings B; : I, — Qfl, then, the binary string B(u) for an integer vector
u € I is obtained by concatenating the strings 3, (u;) for i = 1,...,d. It can be
shown [3] that a good choice for 3, is the inverse only one coding, which maps
an integer u; € I,,, into the binary string z; € Q%’;_l having z;; = 0 if and only
if u; = k. In fact, this coding is both an isometry and a full order-preserving
mapping (when z; is an ordered input). These properties characterizes also the
mapping B if the inverse only one coding is adopted for all the 3,.

Since ¢ () is obtained by the concatenation of d binary strings ¢, (z;), if the
discretization task has produced for each ordered input x; a set of m; — 1 cutoffs
ik, as described in the previous subsection, the kth bit of ¢, (x;) assumes value
0 if and only if x; € R;;. Note that x; € Ry if and only if x; exceeds the cutoff
rik—1 (if £ > 1) and is lower than the subsequent cutoff r; (if £ < m;). On the



other hand, if z; is a nominal input the kth bit of ¢,(x;) assumes value 0 if and
only if x; = k.

Thus, the mapping ¢; can be implemented by a simple device that receives
in input the value x; and compares it with a sequence of integer or real numbers.
This device will be called latticizer; it produces m; binary outputs, but only one
of them can assume the value 0. The whole mapping ¢ is realized by a parallel
of d latticizer, each of which is associated with a different input ;.

2.3 Switching Neural Networks

After the discretization and the latticization steps we have transformed the
training set S = {(x;,y;),7 = 1,...,s} into a collection of examples S’ =
{(25,y5),5 =1,...,s}, where each z; = ¢o(x;) is a binary string in the Boolean
lattice {0,1}™ for a proper value of m. The original binary classification prob-
lem can then be solved by retrieving a positive Boolean function f(z) such that
Jg(x) = f(e(x)) minimizes the probability of misclassifying a pattern x € X.

This target can be pursued by adopting a proper technique, named Shadow
Clustering (SC) [2], which is able to construct a positive Boolean function f
that generalizes well starting from the examples contained in S’. To our best
knowledge, SC is the first method of this kind. It adopts an overall strategy sim-
ilar to Hamming Clustering [7], successfully employed in the solution of binary
classification problems. A detailed description of the approach followed by SC
for the synthesis of positive Boolean functions is presented in [2].

If @ € {0,1}™ is a binary string with length m, let P(a) be the subset of I,
including the indexes 4 for which a; = 1. A positive Boolean function can always
be written in the following Positive Disjunctive Normal Form (PDNF):

2=\ A (1)

acAjeP(a)

where A is an antichain of the Boolean lattice {0,1}™, i.e. a collection of binary
strings such that if a,a’ € A neither a < @’ nor @’ < a. The symbol \/ (resp. A)
in (1) denotes a logical sum (resp. product) among the terms identified by the
subscript. In particular, A jeP(a) % is an implicant for the function f; however,
when no confusion arises, the term implicant will also be used to denote the
corresponding binary string a € A.

The execution of SC produces the antichain A to be employed in (1) for
obtaining the PDNF of the desired positive Boolean function f. This expression
can be readily implemented on a two-level digital circuits including only AND,
OR ports. It should be observed that only the values 1 in a binary string a € A
give rise to an incoming connection in the corresponding AND port. Thus, values
0 in a behave as don’t care symbols for the associated implicant.

The approximating function g(x) that solves our binary classification prob-
lem is then given by the composition f(¢(x)) of the positive Boolean function
f with the mapping ¢ produced by discretization and latticization steps. The
device implementing §(x) is shown in Fig. 1.
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Fig. 1. Schema of a Switching Neural Network.

It can be considered as a three layer feedforward neural network, where the
first layer is responsible of the realization of the binary mapping ¢(x), while
the other two realize the expression (1) for the positive Boolean function f.
Every AND port in the second layer is connected only to some of the outputs
leaving the latticizers; they correspond to values 1 in the associated implicant.
These connections are represented by bold circles in Fig. 1 and can be viewed as
switches that establish links between the inputs of the AND ports and the outputs
of the latticizers. For this reason the connectionist model shown in Fig. 1 is called
Switching Neural Network (SNN).

It is interesting to observe that, unlike standard neural networks, SNNs do
not involve weights; furthermore, signals traveling on them have only one level.
Thus, it should be concluded that the behavior of the function g(x) is entirely
memorized in the architecture of the SNN (connections and switches). This is
not a limitation, since it has been shown that SNN are universal approximators.



Every implicant a € A generated by SC can be translated into an intelligible
rule in the if-then form underlying the classification problem at hand. Consider
the substrings a; of a that are associated with the ith input z; to the network.
The logical product A jeP(a) % gives output 1 only if the binary string z = ¢(x)
presents a value 1 in all the positions where a; has value 1.

If z; is an ordered variable, the execution of SC always generates binary
strings a; containing a single sequence of consecutive values 0, i.e. a run of 0.
If this run begins at the (j + 1)th position and finishes at the kth bit of a;,
the logical product /\jEP(a) zj can give output 1 only if r;; < z; < 4. In the
particular case where the run of 0 begins at the first position (resp. finishes at
the last position), the condition becomes z; < r; (resp. x; > 7).

As an example, suppose that an ordered variable x; has been discretized by
using the four cutoffs 0.1, 0.25, 0.3, 0.5. If the implicant a with a; = 10011 has
been produced by SC, the condition 0.1 < z; < 0.3 has to be included in the if
part of the if-then rule associated with a.

On the other hand, if x; is a nominal variable the portion a; of an implicant
a gives rise to the condition z; € Ukelmi\P(ai){k} Again, if the implicant a
with a; = 01101 has been produced by SC, the condition z; € {1,4} has to be
included in the if-then rule associated with a. In any case, if the binary string
a; contains only values 0, the input x; will not be considered in the rule for a.

Thus, it follows that every implicant a gives rise to an if-then rule, having
in its if part a conjunction of the conditions obtained from the substrings a;
associated with the d inputs z;. If all these conditions are verified, the output
y = g(x) will be assigned the value 1. A logical OR connects all the rules obtained
in this way for every implicant a in the antichain A produced by SC.

Due to this property, SC (with the addition of discretization and latticization)
becomes a rule generation method, being capable of retrieving from the training
set some kind of intelligible information about the physical system underlying
the binary classification problem at hand.

3 Simulation results

To obtain a preliminary evaluation of performances achieved by SNNs trained
with SC, the ten classification problems included in the well-known StatLog
benchmark [8] have been considered. In this way the generalization ability and
the complexity of resulting SNNs can be compared with those of other machine
learning methods, among which rule generation techniques based on decision
trees, such as C4.5 [9]. In all these simulations the discretization method adopted
in the LAD system [6] has been used to map continuous inputs into binary
strings.

The tests contained in the StatLog benchmark present different characteris-
tics that allow to evaluate the behavior of a classification algorithm under sev-
eral angles. Four problems (Heart, Australian, Diabetes, and German) presents
a binary output, thus permitting a direct application of the SNN approach, as



described in the previous section. However, two of them (Heart and German)
adopts a specific cost matrix to weight misclassified patterns.

The remaining six tests concern multiclass problems, which have been split
into a sequence of binary classification problems by constructing a separate set
of implicants for each output value. The class of an new pattern & has then been
chosen by adopting the criteria introduced in [10], which performs a weighted
sum of perfect matching rules (those verified by «), having weight 1, and almost
matching rules (those verified by @, except for one condition), which is assigned
the weight 0.1.

The complexity of an SNN is measured through the number of AND ports
in the second layer (corresponding to the number of intelligible rules) and the
average number of conditions in the if part of a rule. Tab. 1 presents the results
obtained. Accuracy and complexity of resulting SNNs are compared with those
of rulesets produced by C4.5. In the same table is also reported the best gen-
eralization error reported in the StatLog report [8] for each problem, together
with the rank scored by SNN when its generalization error is inserted into the
list of available results.

Table 1. Generalization error and complexity of SNN, compared with C4.5 and with
other methods, on the StatLog benchmark.

Test Generalization error # Rules ||# Conditions
Problem SNN | C4.5| Best |Rank|| SNN |C4.5 [[SNN| C4.5
HEART 0.393 [0.781]0.374 2|| 24.3| 11.4| 5.03 2.68
AUSTRALIAN||0.125 |0.155|0.131 1{| 26.4| 11.5|| 5.55 2.76

DIABETES 0.250 [0.270/0.223 8| 73.8| 9.4| 4.61 2.58
VEHICLE 0.278 [0.266/0.150 12{| 91.2] 26.1|| 5.92 4.03
GERMAN 0.716 [0.985|0.535 13| 95.8] 21.1|| 8.90 2.77
SEGMENT 0.037 [0.040{0.030 11| 82.8]| 28.0|| 4.51 3.94
DNA 0.057 [0.076/0.041 3|| 132.0| 34.0|| 8.99 4.47
SATIMAGE 0.135 [0.150(0.094 6[| 262.0| 80.0|| 7.92 5.41
LETTER 0.115 [0.132|0.064 5({1532.0|570.0|| 8.38 7.64
SHUTTLE 0.0001{0.001|0.0001 1|| 18.0| 20.0} 3.17 3.14

Apart from one case (Vehicle) the generalization error scored by SNN is
always lower than that obtained by C4.5. On the other hand, the complexity of
SNN is considerably higher (except for the Shuttle problem). As a consequence
of this greater complexity, the execution time of SNN is significantly higher than
that of C4.5. It ranges from 3 sec. (Australian) to a hour (Letter) for the StatLog
benchmark, whereas the construction of the set of rules with C4.5 requires at
most three minutes.

This behavior depends on the method employed to produce the implicants
and the corresponding rules. In SNN every rule separates some patterns of a
class from all the example in the training set belonging to other classes; at most
a small error is accepted to avoid overfitting. On the contrary, C4.5 creates rules



that are verified by a subset of patterns from different classes. Subsequent rules
correct errors performed by previous ones; therefore, rules must be applied in a
specific order.

It is interesting to note that in four out of the ten problems SNN achieves one

of the first three ranking positions. This points out the quality of the solutions
offered by SNN;, even if its behavior in dealing with multiclass problems can be
improved by properly adapting the SC algorithm to reconstruct in an efficient
way positive Boolean functions with several outputs.
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